
Experience in Implementing a Parallel File System�Rolf Rieseny Arthur B. Maccabez Stephen R. WheatxMarch 1993AbstractWith ever increasing processor and memory speeds, new methods to overcome the\I/O bottleneck" need to be found. This is especially true for massively parallel com-puters that need to store and retrieve large amounts of data fast and reliably, to fullyutilize the available processing power.We have designed and implemented a parallel �le system, that distributes the work oftransferring data to and frommass storage, across several I/O nodes and communicationchannels.The prototype parallel �le system makes use of the existing single threaded �le sys-tem of the Sandia/University of New Mexico Operating System (SUNMOS). SUNMOSis a joint project between Sandia National Laboratory and the University of New Mex-ico to create a small and e�cient OS for Massively Parallel (MP) Multiple Instruction,Multiple Data (MIMD) machines.We chose �le striping to interleave �les across sixteen disks. By using source-routingof messages we were able to increase throughput beyond the maximum single channelbandwidth the default routing algorithmof the nCUBE 2 hypercube allows. We describeour implementation, the results of our experiments, and the inuence this work hashad on the design of the Performance-oriented, User-managed, Messaging Architecture(PUMA) operating system, the successor to SUNMOS.
�This research was supported in part by Sandia National Laboratories under contract ??.???.???yDepartment of Computer Science; The University of New Mexico; Albuquerque, NM 87131; email:riesen@cs.unm.eduzDepartment of Computer Science; The University of New Mexico; Albuquerque, NM 87131 email:maccabe@cs.unm.edu. Currently on sabbatical at Sandia National Laboratories.xOrganization 1424; Sandia National Laboratories; Albuquerque, NM 87185-7761; email:srwheat@cs.sandia.gov



1 IntroductionMassively Parallel (MP) distributed memory systems are used to run large-scale scienti�capplications. While the number of processing elements easily scales for ever larger problemsizes, this is not generally true for secondary storage. If an application is given moreprocessing power to solve a larger problem size, its I/O requirements may increase, usingthe same number of I/O devices. Vendors of Multiple Instruction, Multiple Data (MIMD)machines usually allow the connection of multiple disk subsystems to various parts of themachine. However, with a traditional �le system, applications have to be modi�ed totake advantage of the added capacity. An application tuned to a particular topology andcon�guration will be hard to port to another architecture. The goal of this project was toincrease throughput to secondary storage transparently to the application.The need to access mass-storage quickly stems from the fact that typical scienti�c applica-tions produce large amounts of data. For example, a program running on 1024 processorsfor 60 minutes, could easily produce 1MB (mega byte) of data on each node. This programwould need 1GB (giga byte) of disk space to store the �nal result. At the beginning of thisproject it took more than 43 minutes to transfer that much data to a �le using the fwritefunction. Applications that need to store intermediate results on secondary storage becausethere is insu�cient memory available on each node, may experience additional performancedecreases. For these applications the ratio of computation to I/O time can easily drop belowone.The goal of this project was to increase throughput when accessing data on secondarystorage. We wanted to use multiple disks simultaneously to increase throughput beyondthe data transfer rate of a single disk. Furthermore, we wanted to exploit the capabilityof the nCUBE 2 hardware to simultaneously send and receive data through more thanone DMA channel. In Section 2 we show the hardware and software environment we hadavailable to develop and test our system. Section 3 describes the communication primitivesused to implement the �le system. Section 4 discusses the basic, sequential �le system uponwhich the parallel �le system was built. In Section 5 we show the performance improvementsattained by tuning parameters in the �le system and the device driver. Then, in Section 6,we explain how we implemented the parallel �le system. Section 7 discusses the experiencewith a �rst implementation that used a single channel to the disks. Section 8 shows themeasurements of a second implementation that uses multiple channels. Section 9 exploresthe tunable parameters in our parallel �le system. Section 10 �nally draws some conclusionsand explains the impact of this research on the design of our next operating system.2 Development and Test Environment2.1 HardwareFigure 1 shows the system con�guration used to develop and study the parallel �le system.An nCUBE 2 hypercube with 1024 array (or compute) nodes provided the foundation forthis research. Attached to the 1024 array nodes are sixteen I/O nodes. Each I/O node isconnected to a SCSI-2 disk controller that can handle up to seven disks. In our con�guration,1



each controller had access to a single 1GB disk. The I/O nodes have the same physicalcharacteristics as the array nodes. All nodes have 4MB of memory, a Complex InstructionSet Computer (CISC) microprocessor, and 13 bidirectional Direct Memory Access (DMA)channels. Each I/0 node is connected to eight array nodes in the hypercube.
I/O NodeArray NodeHost

yod

usmsghandler

SUN OS

15

0

1

Disks

Host

Application

C library

SUNMOS

File System

fsmsghandler

C library

SUNMOS

1024 Array
Nodes

I/O Nodes

Figure 1: System Con�gurationAll connections within the cube, as well as the channels to the disks, have a bandwidth of2.2MB/s. The DMA controllers are capable of driving all channels simultaneously. Fur-thermore, each connection is full duplex; that is, data can leave a node at 2.2MB/s whiledata is arriving from the same destination at the same rate [3].If data must pass through intermediate nodes to reach its destination, the hardware useswormhole routing. No software intervention or intermediate storage is needed. This greatlyimproves communication performance [1] [4].A Sun workstation serves as host computer. It controls the operation of the cube; forexample booting the operating system, and loading application and server programs.2.2 SoftwareTests and development were done under the Sandia/University of New Mexico OperatingSystem (SUNMOS). SUNMOS is a small, e�cient operating system for distributed MIMDarchitectures. In addition to other facilities, SUNMOS provides an emulation of Vertex, thevendor supplied operating system for the nCUBE 2. SUNMOS and the research describedin this paper have greatly inuenced the design of the Performance-oriented User-managedMessaging Architecture (PUMA) operating system, the successor to SUNMOS.All array and I/O nodes run a separate instance of the SUNMOS kernel. Applicationprograms running on the nodes are linked with the C language library that interfaces them2



to the kernel. In addition to the standard C functions, the library provides routines thatprovide access to the inter-processor network. Two important functions are the nuwriteand nuread pair (see Section 3). These functions allow message passing between nodes andprovide the foundation of all I/O operation.The application program running on the I/O nodes is fs , the �le system. The SUNMOS�le system is a modi�ed version of the MINIX �le system [6] [7]. The �le system acceptsmessages from array nodes to initiate I/O operations to the disk controllers. The SUNMOS�le system o�ers services that look to the programmer (through the C library) like thestandard Unix �le I/O system. Speci�cally fwrite and fread allow I/O from array nodesto any disk attached to the cube.The application loader program, yod , running on the host, facilitates stdio operations forapplications running on the cube, as well as access to disk volumes available to the host.The parallel �le system described in this report is built on top of the SUNMOS �le system.This facilitated the rapid prototyping of new ideas for experimentation. For PUMA we willrewrite the SUNMOS �le system and make parallel access the default.3 Communication PrimitivesThe lowest level functions to transfer data between nodes are nwrite and nread. These areVertex compatible, blocking message passing functions. By blocking we mean that thesefunctions do not return until the data has been transferred from or to the user providedbu�er space.SUNMOS maintains a bu�er, called the comm space, to store incoming and outgoing mes-sages. The size of the comm space can be set for each application but remains �xed duringapplication execution. Comm space ooding can occur when more messages arrive thanthe comm space can hold. If ooding occurs, messages may be discarded. This is especiallytroublesome for servers that cannot anticipate the number or size of requests that will arrivein a given time frame.In SUNMOS, the functions nuwrite and nuread behave similarly, but return immediatelyto the user. It is the user's responsibility to check a ag to determine when the transferhas been completed. Until that time, the bu�er space should not be disturbed; otherwise,the data content might become corrupted. These non-blocking calls make it possible tocontinue processing while the DMA hardware performs the data transfer. Our parallel �lesystem makes extensive use of this capability in order to parallelize transfers and managethe data stripes on the individual disks.Two other important functions in SUNMOS are readmem and writemem. In the next sectionwe will see that these functions allow us to build an e�cient and reliable server protocolthat is not subject to comm space ooding. Using readmem, a server can read data directlyfrom the application's memory on another node. The writemem function allows a server towrite data directly into an application's bu�er, thereby circumventing comm space.3



4 File SystemThe SUNMOS �le system uses a message handler on each I/O node. The C library functionsused by applications running on the array nodes are based on a simple Remote ProcedureCall (RPC) protocol. These functions translate application requests (e.g., fopen, fread,and fwrite) into messages that are sent to the message handler on the appropriate I/Onode. Depending on the message type, the message handler calls the corresponding functionin the �le system which then honors the request.Earlier we mentioned that too many messages could ood the comm space of an I/O node.This is especially true for large �le transfer requests that can easily exceed the size of theavailable comm space. Figure 2 shows the data ow for the original fwrite function.
Data

App. Memory

Comm Space

Array Node I/O Node

Data

Figure 2: Data ow in the old fwriteBesides the unreliability, this transfer method unnecessarily duplicates space on each nodeand hampers performance because of the required memory-to-memory copies. Before wecould embark on building a parallel �le system, we had to improve this protocol to ensurethat data sent, arrived at its destination reliably and e�ciently. Figure 3 illustrates thenew protocol.The C library, activated by a call to fwrite, sends a short request message to the I/O nodeusing nwrite. This request contains the location of the data in user space, the amount ofdata to be transferred, and the �le descriptor. The message handler uses this informationto initiate a readmem request for a portion of the user data. This approach enables themessage handler to use double bu�ering. While one packet is being sent to the disk, the�le system can request another portion of the user data. Since the �le system controls thedata transfer, it can always make sure that there is space allocated for the requested data.When the data has been read from the user space and sent to the disk, an acknowledgmentmessage is sent to the library of the initiating application. Control is then returned to theapplication program. 4



Fwrite Request

ReadMem

Array Node I/O Node

User File Sys

Comm
Space

Comm
Space

ACK

DataFigure 3: Data ow in the new fwriteNote that only requests and acknowledgments are passed through the comm space. Thedata is transferred directly from user space into a �le system bu�er. Because the basic I/Ooperations (fread and fwrite) block the execution of the application program, each arraynode can have at most one outstanding data transfer request (SUNMOS is single tasking).This guarantees that the �le system will never have more requests than the total numberof nodes in the system. Since these requests have a �xed and small size, the �le system canreserve enough comm space at startup.A second advantage of the new protocol is scalability. On a larger machine there will bemore nodes with, possibly, larger memories. Therefore, more requests for larger data sizesmight arrive in the comm space of an I/O node. Since the maximum number of requestscan be determined beforehand and is independent of the amount of data to be transferred,the new protocol scales easily. While the size of the comm space increases linearly with thenumber of nodes, the constant factor is very small.The protocol for our fread is the mirror image of the fwrite protocol. Instead of thereadmem function, the �le system uses the writemem function to deposit the data directlyinto the application's memory.5 Low-Level Tune-UpFigure 4 diagrams the performance (throughput) of the fwrite function using the newprotocol. For our tests we wrote �les of increasing size to the disk. In particular, we wrote�les, whose sizes were multiples of 8kB, from 8kB to 256kB. Additionally, we wrote �leswhose sizes were multiples of 128kB.For one test, we transferred data into the cache on the I/O node and returned as soon as5



the data was stored. For each �le we cleared the cache. If a �le �t completely into thedisk cache, only a minimum number of disk accesses were necessary to read and updatedirectory information.The second test wrote the same �les again (after they had been deleted), but this time thedisk cache operated in write-through mode. Thus, the whole �le was written to the diskbefore the operation completed. A third test measured the speed of fwrite under Vertex.Using cache, the transfer rate approaches the hardware bandwidth of the node connections(2.2MB/s). When the cache becomes full, and data must be transferred to disk, through-put drops dramatically. The �nal throughput asymptotically approaches the 400kB/s weachieved when using the write-through option.
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

10 100 1000

k
B
/
s

File size in kB

Fwrite(), 8Kb blocks, before SCSI tune-up

cache size

SUNMOS cache 
SUNMOS fwrite
Vertex fwrite

Figure 4: Before tune-upSince we were going to build the parallel �le system on top of the existing �le system, wewanted it to perform as fast as possible. We identi�ed the following parameters to tuneperformance:Cache size. The unused portion of the memory on the I/O nodes is used for caching.With a block size of 8kB and 16kB we had 100 cache blocks for a cache size of 800kBand 1600kB respectively. When the block size was 32kB we had room for 80 blockscorresponding to a cache size of 2560kB.SCSI transfer size. SCSI transfers data in disk-sector-size chunks. Our disks have a sec-tor size of 512 bytes. The maximum number of sectors transferred with one commandcan be set between 1 and 127 sectors. Requests for larger transfers than the maximumsetting are split into multiple transfers. Smaller transfer requests are performed in asingle burst. 6



Block size. MINIX, like other UNIX �le systems, uses blocks as the unit of disk transfer.Block sizes are typically between 512B and 32kB. Larger block sizes improve thetransfer rate but waste disk space due to fragmentation. Disk fragmentation is asigni�cant problem when many small �les are stored on the disk. Smaller block sizesimprove disk space utilization, but increase transfer time due to the repeated overhead[2].Originally, the SCSI transfer size was set to 8 sectors (4kB) in our SCSI driver. As Figure 5indicates, this resulted in a maximum transfer rate of about 400kB/s. After increasing thesize to the maximum of 127, we were able to attain more than 1400kB/s for su�cientlylarge data transfers.
0

200

400

600

800

1000

1200

1400

1600

1800

1 10 100 1000

k
B
/
s

Number of sectors

Disk Write Speed

After SCSI tuning
Before SCSI tuning

Figure 5: SCSI write throughputEven after this improvement, the �le system transfer rate remained the same. The reasonfor this is that the �le system used a block size of 8kB (16 sectors) that was not large enoughto exploit the improved transfer rate of the SCSI driver. Therefore, we increased the blocksize to 16kB and �nally to 32kB. Figure 6 shows the result of these changes.While the transfer rate into cache remained the same, the time it took to write a �le todisk was signi�cantly lowered by using 16kB blocks and even more so by using 32kB blocks.In a production environment, the cache will quickly become full. Modi�ed data blocks willhave to be written to the disk in order to make room for new blocks. Read requests mightbene�t from the availability of data in the cache; however, most writes will cause blocks tobe written to disk. Therefore, the most interesting curve in Figure 6 is the middle one thatshows throughput using the write-through method.We chose a block size of 32kB because we wanted to tune our �le system for large �les.7



200

400

600

800

1000

1200

1400

1600

1800

2000

2200

10 100 1000

k
B
/
s

File size in kB

Fwrite() Speed, 32kB blocks, after SCSI tune-up

cache size

SUNMOS cache 
SUNMOS fwrite
Vertex fwrite

Figure 6: After SCSI tune-up with 32kB blocksSelecting an even larger block size did not result in much higher throughput at the cost ofsigni�cantly increased disk fragmentation.6 Parallel StripingSeveral methods have been proposed to increase disk throughput. Interleaving data acrossseveral disks sends the contents of a single �le to multiple controllers and disks. The goalis to reduce data transfer time by a factor of 1=n, where n is the number of disks. Thisassumes that there are n independent channels available, or the capacity of the channels isnot a limiting factor [5].Interleaving can be done at the bit, byte, sector, block, or record level. When interleavingis performed at the block level, it is often called striping. One stripe of data with a lengthcorresponding to the block size is placed on the �rst disk. The second stripe goes to thesecond disk and so on until all disks have been used. If there are more stripes to store, the�rst disk is reused.We chose striping at the block level for several reasons:� It can be easily implemented on top of the existing �le system as an additional librarylayer.� As a prototype, the system should be easy to modify, so that new algorithms andparameters can be tested quickly without rebuilding the �le system.8



� If the chunks sent to individual I/O nodes are contiguous data regions of the original�le, bookkeeping and management of individual stripes can be done with less overhead.For this experimental version of our parallel �le system, we collect all the stripes for one�le on a given disk into a single �le. An additional �le is used to store information aboutthe structure of the parallel �le; e.g. stripe size, disks used, total size, size of each disk, etc.This strategy allows for consistency checks and increases the speed of opening a parallel�le. Therefore, each parallel �le is represented by n+1 regular �les, where n is the numberof disks spanned by the parallel �le.6.1 Example of a Parallel WriteIn this section, we discuss a write operation to a parallel �le. This example illustrates howthe data is distributed among the disks. In this example, we assume the user has justissued a request to write a 64kB data block to a parallel �le. We further assume that the�le already exists and is distributed over three disks.Our example uses a stripe size of 8kB. In Figure 7, we see that the �le already contains34kB of data|two full stripes on Disk 0, one complete stripe on Disks 1 and 2, and anincomplete stripe on Disk 1.
Existing data on disk

Fill-up last used stripe

Get all controllers busy

Data sent upun ACK

Start last stripe

User Buffer

a

d

g

b

e

h

c

f

i

a

b

c

d

e

f

g

h

i

0kB

8kB

16kB

24kB

32kB

40kB

48kB

56kB

64kB

Disk 0 Disk 1 Disk 2

Figure 7: Add User Bu�er to Existing Parallel FileWe cannot simply divide the user bu�er into 8kB blocks and send them to the disks. Aftera series of writes, it would be impossible to reassemble the original �le. Instead, we have toproceed in the following manner:� Find out how much more data �ts into the last used stripe. Send that amount of datato the appropriate disk. In our example we send 6kB (block a) to Disk 1.9



� To keep as many channels and disks busy as possible, we carve the remaining bu�erinto 8kB blocks and send one block to each disk that is not already receiving data.Disk 0 and Disk 2 in our example are still idle. So, we send them each an 8kB block(blocks b and c).� We now wait for an acknowledgment signal from one of the I/O nodes. Whenever wereceive one, and there is data left for that particular disk, we send another 8kB block.In our example we �ll blocks d , e, f , g , and h.� When blocks c and f have been written and we receive another acknowledgment signalfrom Disk 0, we send the partial block i .After the �rst three blocks (a, b, and c) have been sent, operation proceeds asynchronously.Whenever an I/O node completes its task, we send it the next block of data. Thus, blocksd , e, f , g , and h are written in no particular order, with the exception, of course, that blockd precedes block g , and block e precedes block h. This scheme keeps all I/O nodes anddisks busy at the same time.7 First ImplementationFigure 8 shows throughput measurements for the �rst implementation of the new parallelfwrite. Compared to the underlying sequential fwrite, there is practically no improve-ment. While this is not what we had expected, it does indicate that the overhead ofmanaging the individual stripes is not signi�cant.The reason for the poor performance is the default routing algorithm that determines thepath taken by messages sent from an array node to an I/O node. The default algorithmused in the nCUBE 2 computer is the E-cube routing algorithm. It is a dimension-orderedrouting method that uses minimal path length and is guaranteed to be deadlock free [4].If messages are sent to di�erent locations, they might share a common channel, dependingon the position of the originating node relative to the destination. Figure 9 illustrates theuse of a common channel. In this case, the fanout (use of multiple channels) does not occuruntil the �rst hop has been completed through a common channel.8 Second ImplementationThe nCUBE 2 hardware supports source routing where the originating node places infor-mation about the entire path into the header of the message. This allows us to force packetsout more than one channel and reduce channel contention. We do this in a round-robinfashion using the four upper channels on the array nodes. We specify a direct neighboras the �rst destination for each packet. From that neighboring node, we let the packettravel along the default path. This guarantees that our new scheme is deadlock free, whilereducing contention for common channels.Note that our strategy may result in packets using longer routes than in the default routingalgorithm. The default routing algorithm brings a packet closer to its destination after10



0

1000

2000

3000

4000

5000

6000

7000

10 100 1000

k
B
/
s

File size in kB

Parallel fwrite to 16 Disks

fwrite with cache
parallel fwrite, no cache

Figure 8: Throughput vs. File Size
1.1MB/s

1.1MB/s

1.1MB/s

2.2MB/sFigure 9: Single channel due to late fanout11



each channel it traverses. Our strategy introduces at most two extra hops into the pathof a packet, but we gain a fourfold increase in the throughput of data leaving a node(see Figure 10). These additional hops increase latency, but this increase is more thancompensated for by the higher throughput.
2.2MB/s

2.2MB/s

2.2MB/s

1.1MB/s

1.1MB/s

1.1MB/sFigure 10: Multiple channel due to early fanoutOur experience indicates that it does not pay to use more than four channels simultaneously.Mainly because the DMA/memory hardware is limited to 10-12MB/s. In addition, channelcontention increases when more channels are used. Using one to four channels we observeda steep increase in throughput. While the throughput continued to increase when usingmore channels, it began to level o� after four channels.Figure 11 shows the performance of the new parallel fwrite using multiple channels andcompares it to the single channel performance. It is interesting to note the irregularity ofthe curve when multiple channels are used. Let us consider the valley at the 80kB mark toshow what circumstances led to this particular drop in performance.To send 80kB of data, the �rst stripe (16kB) is sent out the �rst channel to the appropriatedisk. Then the second stripe is sent out the second channel and so on. After the transferof four stripes (64kB) has been initiated, all four channels are busy. However, the parallel�le system continues to generate requests. It tries to send out the last stripe and has toreuse the �rst channel to do so. Since the transfer of the very �rst stripe is still in progress,transmission of the last stripe is delayed.Figure 12 illustrates that sending �ve stripes takes twice as much time as sending fourstripes, due to channel contention. In other words, we could have sent eight stripes in thesame time it took to send �ve stripes. The irregularities in Figure 11 are due to varyingutilization of the available channels.9 Parallel File System ParametersUsing our parallel �le system we were able to identify three tunable system parameters.12



0

1000

2000

3000

4000

5000

6000

7000

10 100 1000

k
B
/
s

File size in kB

Parallel fwrite to 16 Disks

fwrite with cache
single channel no cache
four channels, no cache

Figure 11: Throughput of parallel fwrite
t2

16kB

16kB

16kB

16kB16kB
First Channel

Second Channel

Third Channel

Fourth Channel

t1

16kB

16kB

16kB Figure 12: Cause of channel contention13



Number of paths. By using more and more paths we are able to linearly increase through-put with every additional path used, up to four paths. Using more than four pathsfurther increases throughput, but the increase is no longer linear. The DMA mem-ory bandwidth of the processing elements limits the total maximum throughput tobetween 10MB/s and 12MB/s.Using more than four channels has the disadvantage that we interfere with messagetransmissions of neighboring nodes without a signi�cant gain. Also, by \reserving"the full memory bandwidth for I/O, processing on that node is impeded.Number of disks. Since we are using only four channels, striping a �le across more thanfour disks does not pay o�. An application can partition the sixteen available disksinto groups of four. It regards each group as a single device by using our parallel�le system. If the application uses 64 nodes or more, it is possible to keep the datastreams to each group completely separated.Stripe size. If the size of each data transfer to a �le for an application could be pre-determined, then the optimal stripe size would be the size of the most frequentlytransmitted size divided by the number of available channels. If c is the number ofchannels that can be used, then a transfer request of size s would be split into c stripesof size s=c. The overhead to schedule and transfer the stripes would be at a minimum,while the throughput would be maximized.The stripe size should not be too big, since that reduces channel utilization. If a smallstripe size is chosen, the overhead of processing might interfere with throughput. Wehave observed that a stripe size between 8kB and 24kB is best when four channels areused.10 Conclusions and Further WorkWe have implemented our strategies as a set of C library function calls that closely mimic thestandard UNIX �le I/O interface. The management of channels, disks, and the individualstripes are transparent to the user. A parallel �le in our system looks like a sequential �leto a user.From the start of this project to the current state, we have been able to increase throughputtwenty-fold using a variety of techniques:1. Tuning the parameters of our device driver to take advantage of the SCSI-2 interface.2. Tuning the block size of our �le system to match the optimal transfer size of theSCSI-2 interface.3. Striping �les across multiple disks to increase throughput.4. Using the multiple channels available on the hypercube to further increase throughput.Item 1 is a simple matter of analyzing performance and tuning the parameters to the givenhardware con�guration. Increasing the �le system block size is a compromise. It bene�ts14



the transfer of larger �les, while wasting disk space due to fragmentation for smaller �les.The applications run on these types of computers warrant, in our opinion, the �ne-tuningof system parameters to bene�t large �le transfers.File striping is a method that �nds more and more acceptance in high performance comput-ing. Not all applications will bene�t form �le striping. Some scienti�c codes do calculationsand disk transfers in a lock-step fashion; either all nodes compute or do transfers. In thatcase the advantage of using multiple channels will be nulli�ed since the node to disk trans-fers are interfering with each other. However, these type of applications will not see aperformance degradation since the administrative overhead in our system is minimal. Someof these applications might even bene�t since our striping approach packetizes the data andcan help to better utilize the available channels. More research is required in this area.The basic protocol underlying all our disk transfers is reliable and e�cient. The use ofthe readmem and writemem functions poses a security risk, since any process on any nodecan read and modify any other application's memory. We are addressing this issue whileimplementing our system under PUMA.When porting PUMA to a mesh architecture, the issue of using multiple channels will alsohave to be addressed. Performance measurements will tell us if it is worthwhile to considermultiple routes in such an environment.11 AcknowledgmentsWe wish to thank Lisa Kennicott who helped us design the basic data transfer protocol un-derlying our fwrite and fread functions. The SUNMOS team was helpful with commentsand ideas during the design phase and the preparation of this paper. We also wish to thankSandia National Laboratories for the use of their equipment.References[1] Sergio Felperin, Prabhakar Raghavan, and Eli Upfal. A theory of wormhole routing inparallel computers. In 33rd Annual Symposium on Foundations of Computer Science,pages 563{572, New York, N.Y., 1992. IEEE.[2] Marshall Kirk McKusick, William N. Joy, Samuel J. Le�er, and Robert S. Fabry. A fast�le system for UNIX. ACM Transactions on Computer Systems, 2(3):181{197, August1984.[3] nCUBE, 1825 NW 167th Place, Beaverton, OR 97006. nCUBE 2 Processor Manual,December 1990. PN 101636.[4] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques in directnetworks. Computer, 26(2), Feb 1993.[5] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays ofinexpensive disks (RAID). In ACM SIGMOD Conference, pages 109{116, June 1988.15



[6] Andrew S. Tanenbaum. Operating systems : design and implementation. Prentice-Hallsoftware series. Prentice-Hall, Englewood Cli�s, N.J., 1987.[7] Andrew S. Tanenbaum. MINIX for the IBM PC, XT, and AT. Prentice-Hall softwareseries. Prentice-Hall, Englewood Cli�s, N.J., 1988.

16



A Manual Pages

17



Sunmos Parallel File Library PFOPEN(3)NAMEpfopen { open a parallel �leSYNTAX#include "clparfs.h"PFILE *pfopen(char *�lename, char *mode, int last, int *blk size);DESCRIPTIONpfopen opens the parallel �le �lename and returns a pointer to a PFILE structure.This pointer is used to read, write, and close a parallel �le. The method used toimplement parallel �les under Sunmos is �le striping. A parallel �le consists of adescriptor �le and one to MAX STRIPES stripe �les. Each stripe �le is located ona separate disk.�lename must be of the form://fdxy/pfnamex speci�es the �rst controller to be used for the �le, and y determines the disk oneach controller. The descriptor �le will be located on the disk attached to the �rstcontroller.mode is one of the following:r open parallel �le for reading (�le must exist).w truncate or create a parallel �le for writing.a open parallel �le for writing at end of �le, or create for writing.r+ open for reading and writing.w+ truncate or create for reading and writing.a+ open or create for reading and writing at end of �le (append).last speci�es the last controller to be used for this �le. Note, that this parametertogether with x in the �lename, determines how many disks the parallel �le willspawn. The value for last must be between x and MAX STRIPES:0 <= x <= last < MAX STRIPESSunmos July 1992 18



Sunmos Parallel File Library PFOPEN(3)If the �le already exists, the value of last is ignored. If a new �le is created and thevalue of last is outside of the allowed range, then the default of MAX STRIPES -1, is used.The parameter blk size speci�es the block size (thickness of each stripe) in bytes.The default BLOCK SIZE (de�ned in fsconst.h) is used, if blk size is less thanone. This value is ignored, if the �le already exists. The value chosen for blk sizeshould be the size of an average pfread or pfwrite divided by the number of disksthe parallel �le spawns.RETURN VALUEpfopen returns NULL if the operation fails. pfs error contains the appropriateerror number.EXAMPLESPFILE *pfp;pfp= pfopen("//fd80/parfile", "w", 15, 0);opens or creates the parallel �le par�le. The �le will be located on disk 0 ofcontrollers 8 to 15; i.e. it will spawn eight disks.PFILE *pfp;pfp= pfopen("//fd02/parfile", "r", -1, 0);opens the �le par�le for reading. All parts of this �le will be on disk 2 of eachcontroller. The �le must already exist. Therefore, the block size and the lastcontroller in use are predetermined.PFILE *pfp1, *pfp2;pfp1= pfopen("//fd00/parfile", "w", 7, 0);pfp2= pfopen("//fd80/parfile", "w", 15, 0);These two �les can coexist, whilePFILE *pfp1, *pfp2;pfp1= pfopen("//fd00/parfile", "w", 11, 0);pfp2= pfopen("//fd80/parfile", "w", 15, 0);is an illegal combination, because the stripe �les on controllers 8 to 11 are overlap-Sunmos July 1992 19



Sunmos Parallel File Library PFOPEN(3)ping.SEE ALSOpfclose(3), p�ush(3), pfwrite(3), pfread(3), pfremove(3), pfrename(3), pfeof(3),pferror(3), pfclrerr(3), pfperror(3), pfstrerror(3)CAVEATSIt is very important to call pfclose before the program ends. If this is not done,the descriptor �le will not be updated. Without the correct information in thedescriptor �le, the parallel �le cannot be opened again, because the �le positioninginformation has been lost.AUTHORRolf Riesen

Sunmos July 1992 20



Sunmos Parallel File Library PFCLOSE(3)NAMEpfclose, p�ush { close or ush a parallel �leSYNTAX#include "clparfs.h"int pfclose(PFILE *p�le);int p�ush(PFILE *p�le);DESCRIPTIONpfclose ushes any unwritten data to the parallel �le p�le; i.e. the stripe �les andthe descriptor �le. All automatically allocated bu�ers are freed and all open �lesare closedpfflush ushes any unwritten data to the parallel �le p�le; i.e. the stripe �les andthe descriptor �le.RETURN VALUEpfclose and pfflush return zero on success and EOF on error.CAVEATSUnlike an ordinary �le, a parallel �le needs to be closed, or at least ushed, beforethe program terminates. Since this library is implemented on top of the existingSunmos �le system, a program terminating without a pfclose or pfflush , willleave the descriptor �le un-updated.When the parallel �le is opened again, internal checks will detect a discrepancybetween the actual �le sizes of the stripe �les and the numbers recorded in thedescriptor �le.SEE ALSOpfopen(3), pfwrite(3), pfread(3), pfremove(3), pfrename(3), pfeof(3), pferror(3),pfclrerr(3), pfperror(3), pfstrerror(3)AUTHORRolf RiesenSunmos July 1992 21



Sunmos Parallel File Library PFWRITE(3)NAMEpfread, pfwrite { parallel �le input/outputSYNTAX#include "clparfs.h"int pfwrite(void *ptr, int size, int nobj, PFILE *p�le);int pfread(void *ptr, int size, int nobj, PFILE *p�le);DESCRIPTIONpfwrite writes nobj objects of size size to the parallel �le p�le. The data is takenfrom memory location ptr. pfwrite returns the number of objects actually written.pfread reads at most nobj objects of size size from the parallel �le p�le. The datais placed at ptr. pfread returns the number of objects actually read.RETURN VALUEpfwrite and pfread return the number of objects actually written or read. Thereturn value might be di�erent from nobj, if an error occurs; e.g. disk full. Forsome type of errors, the return value is 0; e.g. attempt to write to a write protected�le.The return value should always be compared to nobj. In case it is 0, the externalvariable pfs error contains an appropriate error number. pfperror can be used todisplay the corresponding error text.CAVEATSWhile ptr is not required to point to any particular address, performance su�ers, ifptr does not point to a word aligned object.SEE ALSOpfopen(3), pfclose(3), p�ush(3), pfremove(3), pfrename(3), pfeof(3), pferror(3), pf-clrerr(3), pfperror(3), pfstrerror(3)AUTHORRolf RiesenSunmos July 1992 22



Sunmos Parallel File Library PFREMOVE(3)NAMEpfremove { remove (unlink) a parallel �leSYNTAX#include "clparfs.h"int pfremove(char *�lename, int last);DESCRIPTIONpfremove removes all the stripe �les and the descriptor �le associated with theparallel �le �lename. If the descriptor �le is readable, and appears uncorrupted,the parameter last is ignored. The information in the descriptor �le is used to locateall stripe �les and delete them.However, if the descriptor �le is corrupted, or does not exist, last is used to �nd thelast stripe �le. In this case, last should be set to the same value as the correspondingparameter in the pfopen command, when the �le was created.This feature allows the removal of partially corrupted parallel �les; e.g. a parallel�le with a missing descriptor �le.RETURN VALUEpfremove returns zero on success and non-zero on error.SEE ALSOpfopen(3), pfclose(3), p�ush(3), pfwrite(3), pfread(3), pfrename(3), pfeof(3), pfer-ror(3), pfclrerr(3), pfperror(3), pfstrerror(3)AUTHORRolf Riesen
Sunmos July 1992 23



Sunmos Parallel File Library PFRENAME(3)NAMEpfrename { renames a parallel �leSYNTAX#include "clparfs.h"int pfrename(char *oldname, char *newname);DESCRIPTIONpfrename renames or moves oldname to newname. The path of newname mustalready exist on all disks the parallel �le spawns (see examples).RETURN VALUEpfrename returns zero on success and non-zero on error.EXAMPLESThe following command renames the parallel �le //fd00/example to //fd00/new:pfrename("//fd00/example", "//fd00/new");Let us assume for the moment, that //fd00/example had been created spawningcontrollers 0 and 1. The parallel �le would then consist of the two stripe �les//fd00/.pfs.example on disk 0 of controller 0 and //fd10/.pfs.example on disk 0 ofcontroller 1. There would also be the descriptor �le //fd00/example on disk 0 ofcontroller 0.The above pfrename command renames the two stripe �les as well as the descriptor�le. If renaming of any of these three �les fails, pfrename will fail and return anon-zero value.For the commandpfrename("//fd00/example", "//fd00/my dir/new");to work, the directory my dir must exist on all disks which contain one of the stripe�les.Sunmos July 1992 24



Sunmos Parallel File Library PFRENAME(3)SEE ALSOpfopen(3), pfclose(3), p�ush(3), pfwrite(3), pfread(3), pfremove(3), pfeof(3), pfer-ror(3), pfclrerr(3), pfperror(3), pfstrerror(3)CAVEATSpfrename is not atomic. If some of the stripe �les, or the descriptor �le, have beenrenamed, and the operation fails, pfrename tries to undo the changes. However,if another process has created a �le that conicts with oldname in the meantime,then the undo operation will fail.RESTRICTIONSoldname and newname must have the same controller and disk number; i.e. movinga parallel �le from one disk to another is not allowed.AUTHORRolf Riesen

Sunmos July 1992 25



Sunmos Parallel File Library PFERROR(3)NAMEpferror, pfclrerr, pfeof { parallel �le status inquiriesSYNTAX#include "clparfs.h"int pferror(PFILE *p�le);void pfclrerr(PFILE *p�le);int pfeof(PFILE *p�le);DESCRIPTIONpferror returns non-zero if the error ag for p�le is set.pfclrerr clears the error and the end-of-�le ag of p�le. Unless you close p�le,this is the only way to clear the error ag.pfeof returns TRUE (non-zero) if the end-of-�le ag is set.NOTE These functions are implemented as macros.SEE ALSOpfopen(3), pfclose(3), p�ush(3), pfwrite(3), pfread(3), pfremove(3), pfrename(3),pfperror(3), pfstrerror(3)AUTHORRolf Riesen
Sunmos July 1992 26



Sunmos Parallel File Library PFPERROR(3)NAMEpfperror, pfstrerror { Parallel �le system messagesSYNTAX#include "clparfs.h"void pfperror(char *str);char *pfstrerror(int n);DESCRIPTIONpfperror prints the string str, followed by a collon, followed by a string describingthe error number stored in pfs error. If str is NULL, only the error message isprinted. If pfs error is zero (NOERR), then nothing at all is printed.pfstrerror returns a pointer to a string describing the parallel �le system error n.pfs error contains an error number describing the most recent problem encounteredby the parallel �le system. The currently implmented numbers and messages are:ENOERRIllegal error numberEWRNGFMT1File name must begin with //fdEWRNGFMT2File name must be of the form //fdxy/nameENOMEMOut of memoryEWRNGCTRLController # must be: 0 <= CTRL < MAX STRIPESENODESCDescriptor �le does not existESFEXISTSOne of the stripe �les already existsECREATDESCCan't create the descriptor �leEWRNGMAGICMagic number read is incorrectSunmos July 1992 27



Sunmos Parallel File Library PFPERROR(3)ECRPTDESCCorrupted descriptor �leEOPENSFCould not open stripe �le(s)EINVPAR1Parameter must not be NULLECLOSESFError closing stripe �leEWRTDESCError writing to descriptor �leECLOSEDESCError closing descriptor �leENOUPDATECan't open descriptor �le for updateENOWRTCan't open descriptor �le for writingENOSF Stripe �le does not existEINVPAR2size and nobj must be > 0ERDONLYParallel �le is read onlyEINVMODEInvalid modeERMDESCCan't remove the descriptor �leERMSF Can't remove a stripe �leENOREADCan't open descriptor �le for readingEXAMPLESThe following example shows a possible application of pfperror.if ((pfp= pfopen(fname, "w", last, bsize)) == NULL) fpfperror(argv[0]);exit(-1);Sunmos July 1992 28



Sunmos Parallel File Library PFPERROR(3)gSEE ALSOpfopen(3), pfclose(3), p�ush(3), pfwrite(3), pfread(3), pfremove(3), pfrename(3),pfeof(3), pferror(3), pfclrerr(3)AUTHORRolf Riesen

Sunmos July 1992 29



B An Example Program

30



=��� Parallel File System Example 7/10/92 rr���� A simple program to show the use of some of the parallel �le�� system function calls. Put this program into �/ncube/sunmos/tests�� and compile it with:�� make partest.exe���� You can now run it:�� yod partest�=#include <clstdio.h>#include "clparfs.h"#define FILE SIZE 100000 =� Max �le size �=#define MAXRAND 32767.0 =� 2^15 - 1 �=void srand(int);char send buf[FILE SIZE];char recv buf[FILE SIZE];=��� main()�=int main(int argc, char �argv[])f PFILE �pfp;int rcw, rcr, i;int cmp err;=� The x in //fdxy/name determines the �rst disk to be used �=char �fname= "//fde0/partest";=� Block (stripe) size �=int bsize= 32 � 1024; 31



=� Last disk to be used �=int last= 15;=� create random data in send bu�er �=srand(ntime());for (i= 0; i < FILE SIZE; i++)send buf[i]= rand() � 256 = MAXRAND;=��� Create and write a parallel �le�=if ((pfp= pfopen(fname, "w", last, bsize)) == NULL) fpfperror(argv[0]);exit(-1);grcw= pfwrite(send buf, 1, FILE SIZE, pfp);if (pfclose(pfp) 6= 0)pfperror(argv[0]);=��� Read the data back and delete the parallel �le�=if ((pfp= pfopen(fname, "r", -1, -1)) == NULL) fpfperror(argv[0]);exit(-2);grcr= pfread(recv buf, 1, FILE SIZE, pfp);if (pfclose(pfp) 6= 0)pfperror(argv[0]);if (pfremove(fname, -1) 6= 0)pfperror(argv[0]);=��� Compare input and output�=cmp err= FALSE;i= 0; 32



while ((i < FILE SIZE) && (!cmp err)) fif (send buf[i] 6= recv buf[i])cmp err= TRUE;i++;gif (cmp err)printf("compare error at %dnn", i);else if (rcw 6= FILE SIZE)printf("Only %d bytes writtennn", rcw);else if (rcr 6= FILE SIZE)printf("Only %d bytes readnn", rcr);elseprintf("Sent - received comparison oknn");return 0;g =� end of main() �=

33



C Function DescriptionsThis section describes in detail how each function is implemented. It is not neces-sary to read this section to use the library; the manual pages in appendix A shouldbe su�cient for that purpose.C.1 PFILE *pfopen(char *�lename, char *mode, int last, int *blk size)There are two di�erent ways pfopen performs, depending on the mode. If a new�le is to be created (the \w" option), then all the stripe �les are created with afopen command, truncating any existing �les to zero length. The parameter lastdetermines how many stripe �les are needed. Then the descriptor �le is created inthe same manner.If the parallel �le already exists, and mode \r" is speci�ed, several consistencychecks are made.1. The descriptor �le is read in and the magic number is veri�ed to make sure it actuallyis a descriptor �le.2. We already know the start disk of the parallel �le from the �lename. last is read infrom the descriptor �le, ignoring any user supplied value, and then checked, to makesure it falls within the allowed range.3. Now the length of all existing stripe �les are compared to the numbers stored in thedescriptor �le. This check is necessary to make sure the information in the descriptor�le has been updated after the last parallel �le operation. This can be done with thep�ush or pfclose functions.If the numbers match, we can be reasonably sure the current �eld in the descriptor�le is correct. This value tells us where (what disk) to append data to the parallel�le.The descriptor �le (as well as the stripe �les), is left open until pfclose is called.During a pfwrite, pfread, and a p�ush the descriptor is updated and written tothe descriptor �le.pfopen also mallocs memory for the PFILE structure. A pointer to this structureis returned when all tests have been passed successfully. Otherwise, an error numberis stored in pfs error, and NULL is returned.The PFILE structure contains the FILE pointers to each open stripe �le as wellas the descriptor �le. The structure also contains information about the �rst andlast disk used, the block size, and the current �le pointer position for this parallel�le. 34



C.2 int pfclose(PFILE *p�le)The descriptor �le is updated and then closed. All the stripe �les are also closed,and the memory holding PFILE, is freed.C.3 int p�ush(PFILE *p�le)A �ush instruction is issued to all stripe �les, the descriptor �le is updated andalso �ush-ed.C.4 int pfwrite(void *ptr, int size, int nobj, PFILE *p�le)A user block is written to the various stripe �les as outlined in section ??. If theuser bu�er is not word aligned, one, two, or three bytes are sent ahead before thebulk transfer begins. Since the block size is usually a multiple of a word's length,this alignment has to be made at the start of every block. Users are, therefore,discouraged to read and write from unaligned bu�ers.Even when aligned bu�ers are used, the above checks and procedures may haveto be applied. If the previous pfwrite was for an uneven number of bytes, the�lling of the last stripe in the next pfwrite operation will leave the internal bu�erpointer at an uneven address. Users should therefore make sure that nobj * size isa number evenly divisible by four. This assures best performance.C.5 int pfread(void *ptr, int size, int nobj, PFILE *p�le)pfread performs very similarly to pfwrite, except data ows into the oppositedirection.C.6 int pfremove(char *�lename, int last)First, the descriptor �le is opened and read. From it, the necessary information to�nd all the stripe �les, is extracted. If that works, the stripe �les and the descriptor�le are deleted. last is ignored in that case.If the descriptor �le is, for any reason, unreadable, the parameter last is used to�nd the last of the stripe �les. Since the stripe �les and the descriptor �les areordinary �les, the danger exists, that one of them is inadvertedly deleted. The lastparameter allows us to delete all parts of the parallel �le, even if the descriptor �lehas been corrupted.C.7 int pfrename(char *oldname, char *newname)Renames all parts of a parallel �le to a new name. If one of the rename functionsfails, an attempt is made to go back to the state before the call to pfrename. If,35



in the meantime, another process has created a �le whose name now interferes withthe \undo" operation, pfrename has to abort.In a later version this problem could be avoided by �rst attempting to create empty�les of the given new name. Then all �les are \copied" to the new ones, and ifeverything so far has worked, the old names will be removed.If newname contains the name of a directory, that directory must exist on all disksthe parallel �le uses. Also, the controller number in old�le and new�le must beidentical; i.e. a relocation from one controller to another is not supported. Alateral move, say from disk 0 to disk 2 is allowed however, as long as all necessarydirectories exist on all disks a�ected.C.8 int pferror(PFILE *p�le)returns TRUE if the error ag in the PFILE structure is set. This is a macro inclparfs.h.C.9 void pfclrerr(PFILE *p�le)This macro clears the error bit in the PFILE structure.C.10 int pfeof(PFILE *p�le)The last macro in this group checks the EOF bit in the ag of the PFILE structure.C.11 void pfperror(char *str)A string describing the error stored in the global variable pfs error, is displayed onstderr. If str is not NULL, the string it points to is printed �rst, followed by acolon, followed by the error message.Should pfs error be zero, nothing at all is displayed. pfperror uses pfstrerror.C.12 char *pfstrerror(int n)This function returns a pointer to a message appropriate to the error number in n.
36


